![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > supisoex | Unicode version |
Description: Lemma for supiso 7954. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
supiso.1 | |
supiso.2 | |
supisoex.3 |
Ref | Expression |
---|---|
supisoex |
S
,,,,, ,,,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supisoex.3 | . 2 | |
2 | supiso.1 | . . 3 | |
3 | supiso.2 | . . 3 | |
4 | simpl 457 | . . . . . 6 | |
5 | simpr 461 | . . . . . 6 | |
6 | 4, 5 | supisolem 7952 | . . . . 5 |
7 | isof1o 6221 | . . . . . . . 8 | |
8 | f1of 5821 | . . . . . . . 8 | |
9 | 4, 7, 8 | 3syl 20 | . . . . . . 7 |
10 | 9 | ffvelrnda 6031 | . . . . . 6 |
11 | breq1 4455 | . . . . . . . . . . 11 | |
12 | 11 | notbid 294 | . . . . . . . . . 10 |
13 | 12 | ralbidv 2896 | . . . . . . . . 9 |
14 | breq2 4456 | . . . . . . . . . . 11 | |
15 | 14 | imbi1d 317 | . . . . . . . . . 10 |
16 | 15 | ralbidv 2896 | . . . . . . . . 9 |
17 | 13, 16 | anbi12d 710 | . . . . . . . 8 |
18 | 17 | rspcev 3210 | . . . . . . 7 |
19 | 18 | ex 434 | . . . . . 6 |
20 | 10, 19 | syl 16 | . . . . 5 |
21 | 6, 20 | sylbid 215 | . . . 4 |
22 | 21 | rexlimdva 2949 | . . 3 |
23 | 2, 3, 22 | syl2anc 661 | . 2 |
24 | 1, 23 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 C_ wss 3475
class class class wbr 4452 " cima 5007
--> wf 5589 -1-1-onto-> wf1o 5592 ` cfv 5593 Isom wiso 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 |
Copyright terms: Public domain | W3C validator |