![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > supisolem | Unicode version |
Description: Lemma for supiso 7954. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
supiso.1 | |
supiso.2 |
Ref | Expression |
---|---|
supisolem |
S
,,, ,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supiso.1 | . . 3 | |
2 | supiso.2 | . . 3 | |
3 | 1, 2 | jca 532 | . 2 |
4 | simpll 753 | . . . . . . . 8 | |
5 | 4 | adantr 465 | . . . . . . 7 |
6 | simplr 755 | . . . . . . 7 | |
7 | simplr 755 | . . . . . . . 8 | |
8 | 7 | sselda 3503 | . . . . . . 7 |
9 | isorel 6222 | . . . . . . 7 | |
10 | 5, 6, 8, 9 | syl12anc 1226 | . . . . . 6 |
11 | 10 | notbid 294 | . . . . 5 |
12 | 11 | ralbidva 2893 | . . . 4 |
13 | isof1o 6221 | . . . . . . 7 | |
14 | 4, 13 | syl 16 | . . . . . 6 |
15 | f1ofn 5822 | . . . . . 6 | |
16 | 14, 15 | syl 16 | . . . . 5 |
17 | breq2 4456 | . . . . . . 7 | |
18 | 17 | notbid 294 | . . . . . 6 |
19 | 18 | ralima 6152 | . . . . 5 |
20 | 16, 7, 19 | syl2anc 661 | . . . 4 |
21 | 12, 20 | bitr4d 256 | . . 3 |
22 | 4 | adantr 465 | . . . . . . 7 |
23 | simpr 461 | . . . . . . 7 | |
24 | simplr 755 | . . . . . . 7 | |
25 | isorel 6222 | . . . . . . 7 | |
26 | 22, 23, 24, 25 | syl12anc 1226 | . . . . . 6 |
27 | 22 | adantr 465 | . . . . . . . . 9 |
28 | simplr 755 | . . . . . . . . 9 | |
29 | 7 | adantr 465 | . . . . . . . . . 10 |
30 | 29 | sselda 3503 | . . . . . . . . 9 |
31 | isorel 6222 | . . . . . . . . 9 | |
32 | 27, 28, 30, 31 | syl12anc 1226 | . . . . . . . 8 |
33 | 32 | rexbidva 2965 | . . . . . . 7 |
34 | 16 | adantr 465 | . . . . . . . 8 |
35 | breq2 4456 | . . . . . . . . 9 | |
36 | 35 | rexima 6151 | . . . . . . . 8 |
37 | 34, 29, 36 | syl2anc 661 | . . . . . . 7 |
38 | 33, 37 | bitr4d 256 | . . . . . 6 |
39 | 26, 38 | imbi12d 320 | . . . . 5 |
40 | 39 | ralbidva 2893 | . . . 4 |
41 | f1ofo 5828 | . . . . 5 | |
42 | breq1 4455 | . . . . . . 7 | |
43 | breq1 4455 | . . . . . . . 8 | |
44 | 43 | rexbidv 2968 | . . . . . . 7 |
45 | 42, 44 | imbi12d 320 | . . . . . 6 |
46 | 45 | cbvfo 6192 | . . . . 5 |
47 | 14, 41, 46 | 3syl 20 | . . . 4 |
48 | 40, 47 | bitrd 253 | . . 3 |
49 | 21, 48 | anbi12d 710 | . 2 |
50 | 3, 49 | sylan 471 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 A. wral 2807 E. wrex 2808
C_ wss 3475 class class class wbr 4452
" cima 5007 Fn wfn 5588 -onto-> wfo 5591 -1-1-onto-> wf1o 5592 ` cfv 5593 Isom wiso 5594 |
This theorem is referenced by: supisoex 7953 supiso 7954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 |
Copyright terms: Public domain | W3C validator |