![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > suplub | Unicode version |
Description: A supremum is the least upper bound. See also supcl 7938 and supub 7939. (Contributed by NM, 13-Oct-2004.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
supmo.1 | |
supcl.2 |
Ref | Expression |
---|---|
suplub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 461 | . . . . . . 7 | |
2 | breq1 4455 | . . . . . . . . 9 | |
3 | breq1 4455 | . . . . . . . . . 10 | |
4 | 3 | rexbidv 2968 | . . . . . . . . 9 |
5 | 2, 4 | imbi12d 320 | . . . . . . . 8 |
6 | 5 | cbvralv 3084 | . . . . . . 7 |
7 | 1, 6 | sylib 196 | . . . . . 6 |
8 | 7 | a1i 11 | . . . . 5 |
9 | 8 | ss2rabi 3581 | . . . 4 |
10 | supmo.1 | . . . . . 6 | |
11 | 10 | supval2 7935 | . . . . 5 |
12 | supcl.2 | . . . . . . 7 | |
13 | 10, 12 | supeu 7934 | . . . . . 6 |
14 | riotacl2 6271 | . . . . . 6 | |
15 | 13, 14 | syl 16 | . . . . 5 |
16 | 11, 15 | eqeltrd 2545 | . . . 4 |
17 | 9, 16 | sseldi 3501 | . . 3 |
18 | breq2 4456 | . . . . . . 7 | |
19 | 18 | imbi1d 317 | . . . . . 6 |
20 | 19 | ralbidv 2896 | . . . . 5 |
21 | 20 | elrab 3257 | . . . 4 |
22 | 21 | simprbi 464 | . . 3 |
23 | 17, 22 | syl 16 | . 2 |
24 | breq1 4455 | . . . . 5 | |
25 | breq1 4455 | . . . . . 6 | |
26 | 25 | rexbidv 2968 | . . . . 5 |
27 | 24, 26 | imbi12d 320 | . . . 4 |
28 | 27 | rspccv 3207 | . . 3 |
29 | 28 | impd 431 | . 2 |
30 | 23, 29 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 E! wreu 2809
{ crab 2811 class class class wbr 4452
Or wor 4804 iota_ crio 6256 sup csup 7920 |
This theorem is referenced by: suplub2 7941 supnub 7942 supiso 7954 supxrun 11536 supxrunb1 11540 supxrunb2 11541 gtinf 30137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-po 4805 df-so 4806 df-iota 5556 df-riota 6257 df-sup 7921 |
Copyright terms: Public domain | W3C validator |