![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > suplub2 | Unicode version |
Description: Bidirectional form of suplub 7940. (Contributed by Mario Carneiro, 6-Sep-2014.) |
Ref | Expression |
---|---|
supmo.1 | |
supcl.2 | |
suplub2.3 |
Ref | Expression |
---|---|
suplub2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmo.1 | . . . 4 | |
2 | supcl.2 | . . . 4 | |
3 | 1, 2 | suplub 7940 | . . 3 |
4 | 3 | expdimp 437 | . 2 |
5 | breq2 4456 | . . . 4 | |
6 | 5 | cbvrexv 3085 | . . 3 |
7 | breq2 4456 | . . . . . . 7 | |
8 | 7 | biimprd 223 | . . . . . 6 |
9 | 8 | a1i 11 | . . . . 5 |
10 | 1 | ad2antrr 725 | . . . . . . 7 |
11 | simplr 755 | . . . . . . 7 | |
12 | suplub2.3 | . . . . . . . . 9 | |
13 | 12 | adantr 465 | . . . . . . . 8 |
14 | 13 | sselda 3503 | . . . . . . 7 |
15 | 1, 2 | supcl 7938 | . . . . . . . 8 |
16 | 15 | ad2antrr 725 | . . . . . . 7 |
17 | sotr 4827 | . . . . . . 7 | |
18 | 10, 11, 14, 16, 17 | syl13anc 1230 | . . . . . 6 |
19 | 18 | expcomd 438 | . . . . 5 |
20 | 1, 2 | supub 7939 | . . . . . . . 8 |
21 | 20 | adantr 465 | . . . . . . 7 |
22 | 21 | imp 429 | . . . . . 6 |
23 | sotric 4831 | . . . . . . . 8 | |
24 | 10, 16, 14, 23 | syl12anc 1226 | . . . . . . 7 |
25 | 24 | con2bid 329 | . . . . . 6 |
26 | 22, 25 | mpbird 232 | . . . . 5 |
27 | 9, 19, 26 | mpjaod 381 | . . . 4 |
28 | 27 | rexlimdva 2949 | . . 3 |
29 | 6, 28 | syl5bi 217 | . 2 |
30 | 4, 29 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 A. wral 2807
E. wrex 2808 C_ wss 3475 class class class wbr 4452
Or wor 4804 sup csup 7920 |
This theorem is referenced by: suprlub 10530 infmrgelb 10548 supxrlub 11546 infmxrgelb 11555 infrglb 31584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-po 4805 df-so 4806 df-iota 5556 df-riota 6257 df-sup 7921 |
Copyright terms: Public domain | W3C validator |