![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > supmaxlemOLD | Unicode version |
Description: A set that contains the greatest element satisfies the antecedent in supremum theorems. This allows to be used in some situations without the completeness axiom. (Contributed by Jeff Hoffman, 17-Jun-2008.) Obsolete as of 30-Mar-2020. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
supmaxlemOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4456 | . . . . . . 7 | |
2 | 1 | rspcev 3210 | . . . . . 6 |
3 | 2 | ex 434 | . . . . 5 |
4 | 3 | ralrimivw 2872 | . . . 4 |
5 | breq2 4456 | . . . . . . 7 | |
6 | 5 | notbid 294 | . . . . . 6 |
7 | 6 | cbvralv 3084 | . . . . 5 |
8 | 7 | biimpi 194 | . . . 4 |
9 | 4, 8 | anim12ci 567 | . . 3 |
10 | breq1 4455 | . . . . . . 7 | |
11 | 10 | notbid 294 | . . . . . 6 |
12 | 11 | ralbidv 2896 | . . . . 5 |
13 | breq2 4456 | . . . . . . 7 | |
14 | 13 | imbi1d 317 | . . . . . 6 |
15 | 14 | ralbidv 2896 | . . . . 5 |
16 | 12, 15 | anbi12d 710 | . . . 4 |
17 | 16 | rspcev 3210 | . . 3 |
18 | 9, 17 | sylan2 474 | . 2 |
19 | 18 | 3impb 1192 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 A. wral 2807 E. wrex 2808
class class class wbr 4452 |
This theorem is referenced by: supmaxOLD 7946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 |
Copyright terms: Public domain | W3C validator |