![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > supmullem2 | Unicode version |
Description: Lemma for supmul 10536. (Contributed by Mario Carneiro, 5-Jul-2013.) |
Ref | Expression |
---|---|
supmul.1 | |
supmul.2 |
Ref | Expression |
---|---|
supmullem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3112 | . . . . 5 | |
2 | oveq1 6303 | . . . . . . . . 9 | |
3 | 2 | eqeq2d 2471 | . . . . . . . 8 |
4 | 3 | rexbidv 2968 | . . . . . . 7 |
5 | 4 | cbvrexv 3085 | . . . . . 6 |
6 | eqeq1 2461 | . . . . . . 7 | |
7 | 6 | 2rexbidv 2975 | . . . . . 6 |
8 | 5, 7 | syl5bb 257 | . . . . 5 |
9 | supmul.1 | . . . . 5 | |
10 | 1, 8, 9 | elab2 3249 | . . . 4 |
11 | supmul.2 | . . . . . . . . . . 11 | |
12 | 11 | simp2bi 1012 | . . . . . . . . . 10 |
13 | 12 | simp1d 1008 | . . . . . . . . 9 |
14 | 13 | sseld 3502 | . . . . . . . 8 |
15 | 11 | simp3bi 1013 | . . . . . . . . . 10 |
16 | 15 | simp1d 1008 | . . . . . . . . 9 |
17 | 16 | sseld 3502 | . . . . . . . 8 |
18 | 14, 17 | anim12d 563 | . . . . . . 7 |
19 | remulcl 9598 | . . . . . . 7 | |
20 | 18, 19 | syl6 33 | . . . . . 6 |
21 | eleq1a 2540 | . . . . . 6 | |
22 | 20, 21 | syl6 33 | . . . . 5 |
23 | 22 | rexlimdvv 2955 | . . . 4 |
24 | 10, 23 | syl5bi 217 | . . 3 |
25 | 24 | ssrdv 3509 | . 2 |
26 | 12 | simp2d 1009 | . . . . 5 |
27 | 15 | simp2d 1009 | . . . . . . . 8 |
28 | ovex 6324 | . . . . . . . . . 10 | |
29 | 28 | isseti 3115 | . . . . . . . . 9 |
30 | 29 | rgenw 2818 | . . . . . . . 8 |
31 | r19.2z 3918 | . . . . . . . 8 | |
32 | 27, 30, 31 | sylancl 662 | . . . . . . 7 |
33 | rexcom4 3129 | . . . . . . 7 | |
34 | 32, 33 | sylib 196 | . . . . . 6 |
35 | 34 | ralrimivw 2872 | . . . . 5 |
36 | r19.2z 3918 | . . . . 5 | |
37 | 26, 35, 36 | syl2anc 661 | . . . 4 |
38 | rexcom4 3129 | . . . 4 | |
39 | 37, 38 | sylib 196 | . . 3 |
40 | n0 3794 | . . . 4 | |
41 | 10 | exbii 1667 | . . . 4 |
42 | 40, 41 | bitri 249 | . . 3 |
43 | 39, 42 | sylibr 212 | . 2 |
44 | suprcl 10528 | . . . . 5 | |
45 | 12, 44 | syl 16 | . . . 4 |
46 | suprcl 10528 | . . . . 5 | |
47 | 15, 46 | syl 16 | . . . 4 |
48 | 45, 47 | remulcld 9645 | . . 3 |
49 | 9, 11 | supmullem1 10534 | . . 3 |
50 | breq2 4456 | . . . . 5 | |
51 | 50 | ralbidv 2896 | . . . 4 |
52 | 51 | rspcev 3210 | . . 3 |
53 | 48, 49, 52 | syl2anc 661 | . 2 |
54 | 25, 43, 53 | 3jca 1176 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
E. wex 1612 e. wcel 1818 { cab 2442
=/= wne 2652 A. wral 2807 E. wrex 2808
C_ wss 3475 c0 3784 class class class wbr 4452
(class class class)co 6296 sup csup 7920
cr 9512 0 cc0 9513 cmul 9518 clt 9649 cle 9650 |
This theorem is referenced by: supmul 10536 sqrlem5 13080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 |
Copyright terms: Public domain | W3C validator |