![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > suppr | Unicode version |
Description: The supremum of a pair. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
suppr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 996 | . 2 | |
2 | ifcl 3983 | . . 3 | |
3 | 2 | 3adant1 1014 | . 2 |
4 | ifpr 4077 | . . 3 | |
5 | 4 | 3adant1 1014 | . 2 |
6 | breq1 4455 | . . . . . 6 | |
7 | 6 | notbid 294 | . . . . 5 |
8 | breq1 4455 | . . . . . 6 | |
9 | 8 | notbid 294 | . . . . 5 |
10 | sonr 4826 | . . . . . . 7 | |
11 | 10 | 3adant3 1016 | . . . . . 6 |
12 | 11 | adantr 465 | . . . . 5 |
13 | simpr 461 | . . . . 5 | |
14 | 7, 9, 12, 13 | ifbothda 3976 | . . . 4 |
15 | breq1 4455 | . . . . . 6 | |
16 | 15 | notbid 294 | . . . . 5 |
17 | breq1 4455 | . . . . . 6 | |
18 | 17 | notbid 294 | . . . . 5 |
19 | so2nr 4829 | . . . . . . . . 9 | |
20 | 19 | 3impb 1192 | . . . . . . . 8 |
21 | 20 | 3com23 1202 | . . . . . . 7 |
22 | imnan 422 | . . . . . . 7 | |
23 | 21, 22 | sylibr 212 | . . . . . 6 |
24 | 23 | imp 429 | . . . . 5 |
25 | sonr 4826 | . . . . . . 7 | |
26 | 25 | 3adant2 1015 | . . . . . 6 |
27 | 26 | adantr 465 | . . . . 5 |
28 | 16, 18, 24, 27 | ifbothda 3976 | . . . 4 |
29 | breq2 4456 | . . . . . . 7 | |
30 | 29 | notbid 294 | . . . . . 6 |
31 | breq2 4456 | . . . . . . 7 | |
32 | 31 | notbid 294 | . . . . . 6 |
33 | 30, 32 | ralprg 4078 | . . . . 5 |
34 | 33 | 3adant1 1014 | . . . 4 |
35 | 14, 28, 34 | mpbir2and 922 | . . 3 |
36 | 35 | r19.21bi 2826 | . 2 |
37 | 1, 3, 5, 36 | supmax 7944 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 A. wral 2807
if cif 3941 { cpr 4031 class class class wbr 4452
Or wor 4804 sup csup 7920 |
This theorem is referenced by: supsn 7951 tmsxpsval2 21042 esumsn 28072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-po 4805 df-so 4806 df-iota 5556 df-riota 6257 df-sup 7921 |
Copyright terms: Public domain | W3C validator |