![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > suppss2 | Unicode version |
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 22-Mar-2015.) (Revised by AV, 28-May-2019.) |
Ref | Expression |
---|---|
suppss2.n | |
suppss2.a |
Ref | Expression |
---|---|
suppss2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . . . . 5 | |
2 | suppss2.a | . . . . . 6 | |
3 | 2 | adantl 466 | . . . . 5 |
4 | simpl 457 | . . . . 5 | |
5 | 1, 3, 4 | mptsuppdifd 6941 | . . . 4 |
6 | eldifsni 4156 | . . . . . . 7 | |
7 | eldif 3485 | . . . . . . . . . 10 | |
8 | suppss2.n | . . . . . . . . . . 11 | |
9 | 8 | adantll 713 | . . . . . . . . . 10 |
10 | 7, 9 | sylan2br 476 | . . . . . . . . 9 |
11 | 10 | expr 615 | . . . . . . . 8 |
12 | 11 | necon1ad 2673 | . . . . . . 7 |
13 | 6, 12 | syl5 32 | . . . . . 6 |
14 | 13 | 3impia 1193 | . . . . 5 |
15 | 14 | rabssdv 3579 | . . . 4 |
16 | 5, 15 | eqsstrd 3537 | . . 3 |
17 | 16 | ex 434 | . 2 |
18 | id 22 | . . . . . 6 | |
19 | 18 | intnand 916 | . . . . 5 |
20 | supp0prc 6921 | . . . . 5 | |
21 | 19, 20 | syl 16 | . . . 4 |
22 | 0ss 3814 | . . . 4 | |
23 | 21, 22 | syl6eqss 3553 | . . 3 |
24 | 23 | a1d 25 | . 2 |
25 | 17, 24 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 { crab 2811 cvv 3109
\ cdif 3472 C_ wss 3475 c0 3784 { csn 4029 e. cmpt 4510
(class class class)co 6296 csupp 6918 |
This theorem is referenced by: suppsssn 6954 fsuppmptif 7879 sniffsupp 7889 cantnflem1d 8128 cantnflem1 8129 gsumzsplit 16944 gsummpt1n0 16992 gsum2dlem1 16997 gsum2dlem2 16998 gsum2d 16999 dprdfid 17057 dprdfinv 17059 dprdfadd 17060 dmdprdsplitlem 17084 dpjidcl 17107 psrbagaddcl 18020 psrlidm 18056 psrridm 18058 mplsubrg 18102 mplmon 18125 mplmonmul 18126 mplcoe1 18127 mplcoe5 18131 mplbas2 18134 evlslem4 18174 evlslem2 18180 evlslem3 18183 evlslem1 18184 coe1tmmul2 18317 coe1tmmul 18318 uvcff 18822 uvcresum 18824 tsmssplit 20654 coe1mul3 22500 plypf1 22609 tayl0 22757 suppss3 27550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-supp 6919 |
Copyright terms: Public domain | W3C validator |