![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > suppss2OLD | Unicode version |
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014.) (Revised by Mario Carneiro, 22-Mar-2015.) Obsolete version of suppss2 6953 as of 28-May-2019. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
suppss2OLD.n |
Ref | Expression |
---|---|
suppss2OLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . . 3 | |
2 | 1 | mptpreima 5505 | . 2 |
3 | eldifsni 4156 | . . . . 5 | |
4 | eldif 3485 | . . . . . . . 8 | |
5 | suppss2OLD.n | . . . . . . . 8 | |
6 | 4, 5 | sylan2br 476 | . . . . . . 7 |
7 | 6 | expr 615 | . . . . . 6 |
8 | 7 | necon1ad 2673 | . . . . 5 |
9 | 3, 8 | syl5 32 | . . . 4 |
10 | 9 | 3impia 1193 | . . 3 |
11 | 10 | rabssdv 3579 | . 2 |
12 | 2, 11 | syl5eqss 3547 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 { crab 2811 cvv 3109
\ cdif 3472 C_ wss 3475 { csn 4029
e. cmpt 4510 `' ccnv 5003 " cima 5007 |
This theorem is referenced by: cantnflem1dOLD 8151 cantnflem1OLD 8152 gsumzsplitOLD 16945 gsum2dOLD 17000 dprdfidOLD 17064 dprdfinvOLD 17066 dprdfaddOLD 17067 dmdprdsplitlemOLD 17085 dpjidclOLD 17114 psrbagaddclOLD 18021 psrbasOLD 18031 psrlidmOLD 18057 psrridmOLD 18059 mvridlemOLD 18075 mplcoe3OLD 18129 mplcoe2OLD 18133 mplbas2OLD 18135 evlslem4OLD 18173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-mpt 4512 df-xp 5010 df-rel 5011 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 |
Copyright terms: Public domain | W3C validator |