![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > suppssfv | Unicode version |
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.) |
Ref | Expression |
---|---|
suppssfv.a | |
suppssfv.f | |
suppssfv.v | |
suppssfv.y |
Ref | Expression |
---|---|
suppssfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni 4156 | . . . . . . 7 | |
2 | suppssfv.v | . . . . . . . . . . . 12 | |
3 | elex 3118 | . . . . . . . . . . . 12 | |
4 | 2, 3 | syl 16 | . . . . . . . . . . 11 |
5 | 4 | adantll 713 | . . . . . . . . . 10 |
6 | 5 | adantr 465 | . . . . . . . . 9 |
7 | suppssfv.f | . . . . . . . . . . . . . 14 | |
8 | fveq2 5871 | . . . . . . . . . . . . . . 15 | |
9 | 8 | eqeq1d 2459 | . . . . . . . . . . . . . 14 |
10 | 7, 9 | syl5ibrcom 222 | . . . . . . . . . . . . 13 |
11 | 10 | necon3d 2681 | . . . . . . . . . . . 12 |
12 | 11 | adantl 466 | . . . . . . . . . . 11 |
13 | 12 | adantr 465 | . . . . . . . . . 10 |
14 | 13 | imp 429 | . . . . . . . . 9 |
15 | eldifsn 4155 | . . . . . . . . 9 | |
16 | 6, 14, 15 | sylanbrc 664 | . . . . . . . 8 |
17 | 16 | ex 434 | . . . . . . 7 |
18 | 1, 17 | syl5 32 | . . . . . 6 |
19 | 18 | ss2rabdv 3580 | . . . . 5 |
20 | eqid 2457 | . . . . . 6 | |
21 | simpll 753 | . . . . . 6 | |
22 | simplr 755 | . . . . . 6 | |
23 | 20, 21, 22 | mptsuppdifd 6941 | . . . . 5 |
24 | eqid 2457 | . . . . . 6 | |
25 | suppssfv.y | . . . . . . 7 | |
26 | 25 | adantl 466 | . . . . . 6 |
27 | 24, 21, 26 | mptsuppdifd 6941 | . . . . 5 |
28 | 19, 23, 27 | 3sstr4d 3546 | . . . 4 |
29 | suppssfv.a | . . . . 5 | |
30 | 29 | adantl 466 | . . . 4 |
31 | 28, 30 | sstrd 3513 | . . 3 |
32 | 31 | ex 434 | . 2 |
33 | mptexg 6142 | . . . . . . 7 | |
34 | fvex 5881 | . . . . . . . . . 10 | |
35 | 34 | rgenw 2818 | . . . . . . . . 9 |
36 | dmmptg 5509 | . . . . . . . . 9 | |
37 | 35, 36 | ax-mp 5 | . . . . . . . 8 |
38 | dmexg 6731 | . . . . . . . 8 | |
39 | 37, 38 | syl5eqelr 2550 | . . . . . . 7 |
40 | 33, 39 | impbii 188 | . . . . . 6 |
41 | 40 | anbi1i 695 | . . . . 5 |
42 | supp0prc 6921 | . . . . 5 | |
43 | 41, 42 | sylnbi 306 | . . . 4 |
44 | 0ss 3814 | . . . 4 | |
45 | 43, 44 | syl6eqss 3553 | . . 3 |
46 | 45 | a1d 25 | . 2 |
47 | 32, 46 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
=/= wne 2652 A. wral 2807 { crab 2811
cvv 3109
\ cdif 3472 C_ wss 3475 c0 3784 { csn 4029 e. cmpt 4510
dom cdm 5004 ` cfv 5593 (class class class)co 6296
csupp 6918 |
This theorem is referenced by: evlslem2 18180 evlslem6 18181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-supp 6919 |
Copyright terms: Public domain | W3C validator |