![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > suppssov1OLD | Unicode version |
Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) Obsolete version of suppssov1 6951 as of 28-May-2019. (New usage is discouraged.) |
Ref | Expression |
---|---|
suppssov1OLD.s | |
suppssov1OLD.o | |
suppssov1OLD.a | |
suppssov1OLD.b |
Ref | Expression |
---|---|
suppssov1OLD |
O
, , , , ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppssov1OLD.a | . . . . . . . 8 | |
2 | elex 3118 | . . . . . . . 8 | |
3 | 1, 2 | syl 16 | . . . . . . 7 |
4 | 3 | adantr 465 | . . . . . 6 |
5 | eldifsni 4156 | . . . . . . . 8 | |
6 | suppssov1OLD.b | . . . . . . . . . . 11 | |
7 | suppssov1OLD.o | . . . . . . . . . . . . 13 | |
8 | 7 | ralrimiva 2871 | . . . . . . . . . . . 12 |
9 | 8 | adantr 465 | . . . . . . . . . . 11 |
10 | oveq2 6304 | . . . . . . . . . . . . 13 | |
11 | 10 | eqeq1d 2459 | . . . . . . . . . . . 12 |
12 | 11 | rspcva 3208 | . . . . . . . . . . 11 |
13 | 6, 9, 12 | syl2anc 661 | . . . . . . . . . 10 |
14 | oveq1 6303 | . . . . . . . . . . 11 | |
15 | 14 | eqeq1d 2459 | . . . . . . . . . 10 |
16 | 13, 15 | syl5ibrcom 222 | . . . . . . . . 9 |
17 | 16 | necon3d 2681 | . . . . . . . 8 |
18 | 5, 17 | syl5 32 | . . . . . . 7 |
19 | 18 | imp 429 | . . . . . 6 |
20 | eldifsn 4155 | . . . . . 6 | |
21 | 4, 19, 20 | sylanbrc 664 | . . . . 5 |
22 | 21 | ex 434 | . . . 4 |
23 | 22 | ss2rabdv 3580 | . . 3 |
24 | eqid 2457 | . . . 4 | |
25 | 24 | mptpreima 5505 | . . 3 |
26 | eqid 2457 | . . . 4 | |
27 | 26 | mptpreima 5505 | . . 3 |
28 | 23, 25, 27 | 3sstr4g 3544 | . 2 |
29 | suppssov1OLD.s | . 2 | |
30 | 28, 29 | sstrd 3513 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 { crab 2811 cvv 3109
\ cdif 3472 C_ wss 3475 { csn 4029
e. cmpt 4510 `' ccnv 5003 " cima 5007
(class class class)co 6296 |
This theorem is referenced by: suppssof1OLD 6559 evlslem6OLD 18182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-xp 5010 df-rel 5011 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fv 5601 df-ov 6299 |
Copyright terms: Public domain | W3C validator |