![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > suprzcl | Unicode version |
Description: The supremum of a bounded-above set of integers is a member of the set. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
suprzcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zssre 10896 | . . . . . 6 | |
2 | sstr 3511 | . . . . . 6 | |
3 | 1, 2 | mpan2 671 | . . . . 5 |
4 | suprcl 10528 | . . . . 5 | |
5 | 3, 4 | syl3an1 1261 | . . . 4 |
6 | 5 | ltm1d 10503 | . . 3 |
7 | peano2rem 9909 | . . . . . 6 | |
8 | 4, 7 | syl 16 | . . . . 5 |
9 | suprlub 10530 | . . . . 5 | |
10 | 8, 9 | mpdan 668 | . . . 4 |
11 | 3, 10 | syl3an1 1261 | . . 3 |
12 | 6, 11 | mpbid 210 | . 2 |
13 | simpl1 999 | . . . . . . . . . 10 | |
14 | 13 | sselda 3503 | . . . . . . . . 9 |
15 | 1, 14 | sseldi 3501 | . . . . . . . 8 |
16 | 5 | adantr 465 | . . . . . . . . 9 |
17 | 16 | adantr 465 | . . . . . . . 8 |
18 | simprl 756 | . . . . . . . . . . . 12 | |
19 | 13, 18 | sseldd 3504 | . . . . . . . . . . 11 |
20 | zre 10893 | . . . . . . . . . . 11 | |
21 | 19, 20 | syl 16 | . . . . . . . . . 10 |
22 | peano2re 9774 | . . . . . . . . . 10 | |
23 | 21, 22 | syl 16 | . . . . . . . . 9 |
24 | 23 | adantr 465 | . . . . . . . 8 |
25 | suprub 10529 | . . . . . . . . . 10 | |
26 | 3, 25 | syl3anl1 1276 | . . . . . . . . 9 |
27 | 26 | adantlr 714 | . . . . . . . 8 |
28 | simprr 757 | . . . . . . . . . 10 | |
29 | 1red 9632 | . . . . . . . . . . 11 | |
30 | 16, 29, 21 | ltsubaddd 10173 | . . . . . . . . . 10 |
31 | 28, 30 | mpbid 210 | . . . . . . . . 9 |
32 | 31 | adantr 465 | . . . . . . . 8 |
33 | 15, 17, 24, 27, 32 | lelttrd 9761 | . . . . . . 7 |
34 | 19 | adantr 465 | . . . . . . . 8 |
35 | zleltp1 10939 | . . . . . . . 8 | |
36 | 14, 34, 35 | syl2anc 661 | . . . . . . 7 |
37 | 33, 36 | mpbird 232 | . . . . . 6 |
38 | 37 | ralrimiva 2871 | . . . . 5 |
39 | suprleub 10532 | . . . . . . 7 | |
40 | 3, 39 | syl3anl1 1276 | . . . . . 6 |
41 | 21, 40 | syldan 470 | . . . . 5 |
42 | 38, 41 | mpbird 232 | . . . 4 |
43 | suprub 10529 | . . . . . 6 | |
44 | 3, 43 | syl3anl1 1276 | . . . . 5 |
45 | 44 | adantrr 716 | . . . 4 |
46 | 16, 21 | letri3d 9748 | . . . 4 |
47 | 42, 45, 46 | mpbir2and 922 | . . 3 |
48 | 47, 18 | eqeltrd 2545 | . 2 |
49 | 12, 48 | rexlimddv 2953 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
E. wrex 2808 C_ wss 3475 c0 3784 class class class wbr 4452
(class class class)co 6296 sup csup 7920
cr 9512 1 c1 9514 caddc 9516 clt 9649 cle 9650 cmin 9828 cz 10889 |
This theorem is referenced by: suprfinzcl 11003 rpnnen1lem1 11237 rpnnen1lem2 11238 pgpssslw 16634 plyeq0lem 22607 fourierdlem20 31909 fourierdlem64 31953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 |
Copyright terms: Public domain | W3C validator |