![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > supub | Unicode version |
Description: A supremum is an upper
bound. See also supcl 7938 and suplub 7940.
This proof demonstrates how to expand an iota-based definition (df-iota 5556) using riotacl2 6271. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
supmo.1 | |
supcl.2 |
Ref | Expression |
---|---|
supub |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 457 | . . . . . 6 | |
2 | 1 | a1i 11 | . . . . 5 |
3 | 2 | ss2rabi 3581 | . . . 4 |
4 | supmo.1 | . . . . . 6 | |
5 | 4 | supval2 7935 | . . . . 5 |
6 | supcl.2 | . . . . . . 7 | |
7 | 4, 6 | supeu 7934 | . . . . . 6 |
8 | riotacl2 6271 | . . . . . 6 | |
9 | 7, 8 | syl 16 | . . . . 5 |
10 | 5, 9 | eqeltrd 2545 | . . . 4 |
11 | 3, 10 | sseldi 3501 | . . 3 |
12 | breq2 4456 | . . . . . . . 8 | |
13 | 12 | notbid 294 | . . . . . . 7 |
14 | 13 | cbvralv 3084 | . . . . . 6 |
15 | breq1 4455 | . . . . . . . 8 | |
16 | 15 | notbid 294 | . . . . . . 7 |
17 | 16 | ralbidv 2896 | . . . . . 6 |
18 | 14, 17 | syl5bb 257 | . . . . 5 |
19 | 18 | elrab 3257 | . . . 4 |
20 | 19 | simprbi 464 | . . 3 |
21 | 11, 20 | syl 16 | . 2 |
22 | breq2 4456 | . . . 4 | |
23 | 22 | notbid 294 | . . 3 |
24 | 23 | rspccv 3207 | . 2 |
25 | 21, 24 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 E! wreu 2809
{ crab 2811 class class class wbr 4452
Or wor 4804 iota_ crio 6256 sup csup 7920 |
This theorem is referenced by: suplub2 7941 supmaxOLD 7946 supgtoreq 7949 supiso 7954 suprub 10529 infmrlb 10549 suprzub 11202 supxrun 11536 supxrub 11545 infmxrlb 11554 dgrub 22631 supssd 27527 ssnnssfz 27597 oddpwdc 28293 ballotlemimin 28444 ballotlemfrcn0 28468 wsuclb 29384 itg2addnclem 30066 supubt 30230 ssnn0ssfz 32938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-po 4805 df-so 4806 df-iota 5556 df-riota 6257 df-sup 7921 |
Copyright terms: Public domain | W3C validator |