![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > supval2 | Unicode version |
Description: Alternative expression for the supremum. (Contributed by Mario Carneiro, 24-Dec-2016.) (Revised by Thierry Arnoux, 24-Sep-2017.) |
Ref | Expression |
---|---|
supmo.1 |
Ref | Expression |
---|---|
supval2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmo.1 | . 2 | |
2 | simpl 457 | . . . . . 6 | |
3 | simpr 461 | . . . . . 6 | |
4 | 2, 3 | supeu 7934 | . . . . 5 |
5 | riotauni 6263 | . . . . 5 | |
6 | 4, 5 | syl 16 | . . . 4 |
7 | df-sup 7921 | . . . 4 | |
8 | 6, 7 | syl6reqr 2517 | . . 3 |
9 | rabn0 3805 | . . . . . . . . . 10 | |
10 | 9 | necon1bbii 2721 | . . . . . . . . 9 |
11 | 10 | biimpi 194 | . . . . . . . 8 |
12 | 11 | unieqd 4259 | . . . . . . 7 |
13 | uni0 4276 | . . . . . . 7 | |
14 | 12, 13 | syl6eq 2514 | . . . . . 6 |
15 | 7, 14 | syl5eq 2510 | . . . . 5 |
16 | reurex 3074 | . . . . . . 7 | |
17 | 16 | con3i 135 | . . . . . 6 |
18 | riotaund 6293 | . . . . . 6 | |
19 | 17, 18 | syl 16 | . . . . 5 |
20 | 15, 19 | eqtr4d 2501 | . . . 4 |
21 | 20 | adantl 466 | . . 3 |
22 | 8, 21 | pm2.61dan 791 | . 2 |
23 | 1, 22 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 A. wral 2807
E. wrex 2808 E! wreu 2809 { crab 2811
c0 3784 U. cuni 4249 class class class wbr 4452
Or wor 4804 iota_ crio 6256 sup csup 7920 |
This theorem is referenced by: eqsup 7936 supcl 7938 supub 7939 suplub 7940 fisupcl 7948 toslub 27656 tosglb 27658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-po 4805 df-so 4806 df-iota 5556 df-riota 6257 df-sup 7921 |
Copyright terms: Public domain | W3C validator |