![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > swoord1 | Unicode version |
Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.) |
Ref | Expression |
---|---|
swoer.1 | |
swoer.2 | |
swoer.3 | |
swoord.4 | |
swoord.5 | |
swoord.6 |
Ref | Expression |
---|---|
swoord1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 | |
2 | swoord.6 | . . . . 5 | |
3 | swoer.1 | . . . . . . 7 | |
4 | difss 3630 | . . . . . . 7 | |
5 | 3, 4 | eqsstri 3533 | . . . . . 6 |
6 | 5 | ssbri 4494 | . . . . 5 |
7 | df-br 4453 | . . . . . 6 | |
8 | opelxp1 5037 | . . . . . 6 | |
9 | 7, 8 | sylbi 195 | . . . . 5 |
10 | 2, 6, 9 | 3syl 20 | . . . 4 |
11 | swoord.5 | . . . 4 | |
12 | swoord.4 | . . . 4 | |
13 | swoer.3 | . . . . 5 | |
14 | 13 | swopolem 4814 | . . . 4 |
15 | 1, 10, 11, 12, 14 | syl13anc 1230 | . . 3 |
16 | 3 | brdifun 7357 | . . . . . . 7 |
17 | 10, 12, 16 | syl2anc 661 | . . . . . 6 |
18 | 2, 17 | mpbid 210 | . . . . 5 |
19 | orc 385 | . . . . 5 | |
20 | 18, 19 | nsyl 121 | . . . 4 |
21 | biorf 405 | . . . 4 | |
22 | 20, 21 | syl 16 | . . 3 |
23 | 15, 22 | sylibrd 234 | . 2 |
24 | 13 | swopolem 4814 | . . . 4 |
25 | 1, 12, 11, 10, 24 | syl13anc 1230 | . . 3 |
26 | olc 384 | . . . . 5 | |
27 | 18, 26 | nsyl 121 | . . . 4 |
28 | biorf 405 | . . . 4 | |
29 | 27, 28 | syl 16 | . . 3 |
30 | 25, 29 | sylibrd 234 | . 2 |
31 | 23, 30 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
\ cdif 3472 u. cun 3473 <. cop 4035
class class class wbr 4452 X. cxp 5002
`' ccnv 5003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-cnv 5012 |
Copyright terms: Public domain | W3C validator |