![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > swrdccatin12lem2b | Unicode version |
Description: Lemma 2 for swrdccatin12lem2 12714. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.) |
Ref | Expression |
---|---|
swrdccatin12lem2b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2 11708 | . . . . 5 | |
2 | zsubcl 10931 | . . . . . . 7 | |
3 | 2 | 3adant1 1014 | . . . . . 6 |
4 | 3 | adantr 465 | . . . . 5 |
5 | 1, 4 | sylbi 195 | . . . 4 |
6 | 5 | adantr 465 | . . 3 |
7 | elfzonelfzo 11912 | . . 3 | |
8 | 6, 7 | syl 16 | . 2 |
9 | elfz2nn0 11798 | . . . . . . . 8 | |
10 | nn0cn 10830 | . . . . . . . . . 10 | |
11 | nn0cn 10830 | . . . . . . . . . 10 | |
12 | elfzelz 11717 | . . . . . . . . . . . 12 | |
13 | zcn 10894 | . . . . . . . . . . . 12 | |
14 | subcl 9842 | . . . . . . . . . . . . . . . . . 18 | |
15 | 14 | ancoms 453 | . . . . . . . . . . . . . . . . 17 |
16 | 15 | addid1d 9801 | . . . . . . . . . . . . . . . 16 |
17 | 16 | eqcomd 2465 | . . . . . . . . . . . . . . 15 |
18 | 17 | adantl 466 | . . . . . . . . . . . . . 14 |
19 | simprr 757 | . . . . . . . . . . . . . . . 16 | |
20 | simpl 457 | . . . . . . . . . . . . . . . . 17 | |
21 | 20 | adantl 466 | . . . . . . . . . . . . . . . 16 |
22 | simpl 457 | . . . . . . . . . . . . . . . 16 | |
23 | 19, 21, 22 | npncan3d 9990 | . . . . . . . . . . . . . . 15 |
24 | subcl 9842 | . . . . . . . . . . . . . . . . . 18 | |
25 | subid1 9862 | . . . . . . . . . . . . . . . . . . 19 | |
26 | 25 | eqcomd 2465 | . . . . . . . . . . . . . . . . . 18 |
27 | 24, 26 | syl 16 | . . . . . . . . . . . . . . . . 17 |
28 | 27 | adantrl 715 | . . . . . . . . . . . . . . . 16 |
29 | 28 | oveq2d 6312 | . . . . . . . . . . . . . . 15 |
30 | 23, 29 | eqtr3d 2500 | . . . . . . . . . . . . . 14 |
31 | 18, 30 | oveq12d 6314 | . . . . . . . . . . . . 13 |
32 | 31 | ex 434 | . . . . . . . . . . . 12 |
33 | 12, 13, 32 | 3syl 20 | . . . . . . . . . . 11 |
34 | 33 | com12 31 | . . . . . . . . . 10 |
35 | 10, 11, 34 | syl2an 477 | . . . . . . . . 9 |
36 | 35 | 3adant3 1016 | . . . . . . . 8 |
37 | 9, 36 | sylbi 195 | . . . . . . 7 |
38 | 37 | imp 429 | . . . . . 6 |
39 | 38 | eleq2d 2527 | . . . . 5 |
40 | 39 | biimpa 484 | . . . 4 |
41 | 0zd 10901 | . . . . . 6 | |
42 | elfz2 11708 | . . . . . . . 8 | |
43 | zsubcl 10931 | . . . . . . . . . . . 12 | |
44 | 43 | ancoms 453 | . . . . . . . . . . 11 |
45 | 0zd 10901 | . . . . . . . . . . 11 | |
46 | 44, 45 | zsubcld 10999 | . . . . . . . . . 10 |
47 | 46 | 3adant2 1015 | . . . . . . . . 9 |
48 | 47 | adantr 465 | . . . . . . . 8 |
49 | 42, 48 | sylbi 195 | . . . . . . 7 |
50 | 49 | adantl 466 | . . . . . 6 |
51 | 6, 41, 50 | 3jca 1176 | . . . . 5 |
52 | 51 | adantr 465 | . . . 4 |
53 | fzosubel2 11876 | . . . 4 | |
54 | 40, 52, 53 | syl2anc 661 | . . 3 |
55 | 54 | ex 434 | . 2 |
56 | 8, 55 | syld 44 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 class class class wbr 4452
(class class class)co 6296 cc 9511 0 cc0 9513 caddc 9516 cle 9650 cmin 9828 cn0 10820
cz 10889 cfz 11701 cfzo 11824 |
This theorem is referenced by: swrdccatin12lem2 12714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-fzo 11825 |
Copyright terms: Public domain | W3C validator |