![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > swrdnd | Unicode version |
Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) |
Ref | Expression |
---|---|
swrdnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | swrdlend 12656 | . . . 4 | |
2 | 1 | a1i 11 | . . 3 |
3 | 2 | com13 80 | . 2 |
4 | 3orcomb 983 | . . . . 5 | |
5 | df-3or 974 | . . . . 5 | |
6 | 4, 5 | bitri 249 | . . . 4 |
7 | swrdval 12644 | . . . . . . . . 9 | |
8 | 7 | adantl 466 | . . . . . . . 8 |
9 | simpl2 1000 | . . . . . . . . . . . . . . . . 17 | |
10 | simpl3 1001 | . . . . . . . . . . . . . . . . 17 | |
11 | zre 10893 | . . . . . . . . . . . . . . . . . . . . 21 | |
12 | zre 10893 | . . . . . . . . . . . . . . . . . . . . 21 | |
13 | 11, 12 | anim12i 566 | . . . . . . . . . . . . . . . . . . . 20 |
14 | 13 | 3adant1 1014 | . . . . . . . . . . . . . . . . . . 19 |
15 | ltnle 9685 | . . . . . . . . . . . . . . . . . . 19 | |
16 | 14, 15 | syl 16 | . . . . . . . . . . . . . . . . . 18 |
17 | 16 | biimpar 485 | . . . . . . . . . . . . . . . . 17 |
18 | ssfzo12 11905 | . . . . . . . . . . . . . . . . 17 | |
19 | 9, 10, 17, 18 | syl3anc 1228 | . . . . . . . . . . . . . . . 16 |
20 | 0red 9618 | . . . . . . . . . . . . . . . . . . . . 21 | |
21 | 20, 11 | lenltd 9752 | . . . . . . . . . . . . . . . . . . . 20 |
22 | 21 | 3ad2ant2 1018 | . . . . . . . . . . . . . . . . . . 19 |
23 | 22 | biimpd 207 | . . . . . . . . . . . . . . . . . 18 |
24 | lencl 12562 | . . . . . . . . . . . . . . . . . . . . 21 | |
25 | nn0re 10829 | . . . . . . . . . . . . . . . . . . . . . 22 | |
26 | lenlt 9684 | . . . . . . . . . . . . . . . . . . . . . 22 | |
27 | 12, 25, 26 | syl2anr 478 | . . . . . . . . . . . . . . . . . . . . 21 |
28 | 24, 27 | sylan 471 | . . . . . . . . . . . . . . . . . . . 20 |
29 | 28 | 3adant2 1015 | . . . . . . . . . . . . . . . . . . 19 |
30 | 29 | biimpd 207 | . . . . . . . . . . . . . . . . . 18 |
31 | 23, 30 | anim12d 563 | . . . . . . . . . . . . . . . . 17 |
32 | 31 | adantr 465 | . . . . . . . . . . . . . . . 16 |
33 | 19, 32 | syld 44 | . . . . . . . . . . . . . . 15 |
34 | ioran 490 | . . . . . . . . . . . . . . 15 | |
35 | 33, 34 | syl6ibr 227 | . . . . . . . . . . . . . 14 |
36 | 35 | con2d 115 | . . . . . . . . . . . . 13 |
37 | 36 | ex 434 | . . . . . . . . . . . 12 |
38 | 37 | com13 80 | . . . . . . . . . . 11 |
39 | 38 | imp31 432 | . . . . . . . . . 10 |
40 | wrdf 12553 | . . . . . . . . . . . . . . 15 | |
41 | fdm 5740 | . . . . . . . . . . . . . . 15 | |
42 | 40, 41 | syl 16 | . . . . . . . . . . . . . 14 |
43 | 42 | sseq2d 3531 | . . . . . . . . . . . . 13 |
44 | 43 | notbid 294 | . . . . . . . . . . . 12 |
45 | 44 | 3ad2ant1 1017 | . . . . . . . . . . 11 |
46 | 45 | adantl 466 | . . . . . . . . . 10 |
47 | 39, 46 | mpbird 232 | . . . . . . . . 9 |
48 | 47 | iffalsed 3952 | . . . . . . . 8 |
49 | 8, 48 | eqtrd 2498 | . . . . . . 7 |
50 | 49 | exp31 604 | . . . . . 6 |
51 | 50 | com23 78 | . . . . 5 |
52 | pm2.24 109 | . . . . . 6 | |
53 | 52 | a1d 25 | . . . . 5 |
54 | 51, 53 | jaoi 379 | . . . 4 |
55 | 6, 54 | sylbi 195 | . . 3 |
56 | 55 | com13 80 | . 2 |
57 | 3, 56 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
\/ w3o 972 /\ w3a 973 = wceq 1395
e. wcel 1818 C_ wss 3475 c0 3784 if cif 3941 <. cop 4035
class class class wbr 4452 e. cmpt 4510
dom cdm 5004 --> wf 5589 ` cfv 5593
(class class class)co 6296 cr 9512 0 cc0 9513 caddc 9516 clt 9649 cle 9650 cmin 9828 cn0 10820
cz 10889 cfzo 11824 chash 12405 Word cword 12534 csubstr 12538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-fzo 11825 df-hash 12406 df-word 12542 df-substr 12546 |
Copyright terms: Public domain | W3C validator |