![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > syl2ani | Unicode version |
Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.) |
Ref | Expression |
---|---|
syl2ani.1 | |
syl2ani.2 | |
syl2ani.3 |
Ref | Expression |
---|---|
syl2ani |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2ani.1 | . 2 | |
2 | syl2ani.2 | . . 3 | |
3 | syl2ani.3 | . . 3 | |
4 | 2, 3 | sylan2i 655 | . 2 |
5 | 1, 4 | sylani 654 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: 2mo 2373 frxp 6910 mapen 7701 fin1a2lem9 8809 psss 15844 mgmidmo 15886 aannenlem1 22724 funtransport 29681 cgrxfr 29705 btwnxfr 29706 bj-cbv3tb 34271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |