MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an2br Unicode version

Theorem syl3an2br 1268
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an2br.1
syl3an2br.2
Assertion
Ref Expression
syl3an2br

Proof of Theorem syl3an2br
StepHypRef Expression
1 syl3an2br.1 . . 3
21biimpri 206 . 2
3 syl3an2br.2 . 2
42, 3syl3an2 1262 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\w3a 973
This theorem is referenced by:  igenval  30458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
  Copyright terms: Public domain W3C validator