![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > syl3an3b | Unicode version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an3b.1 | |
syl3an3b.2 |
Ref | Expression |
---|---|
syl3an3b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an3b.1 | . . 3 | |
2 | 1 | biimpi 194 | . 2 |
3 | syl3an3b.2 | . 2 | |
4 | 2, 3 | syl3an3 1263 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ w3a 973 |
This theorem is referenced by: fresaunres1 5763 fvun2 5945 nnmsucr 7293 xrlttr 11375 iccdil 11687 icccntr 11689 absexpz 13138 posglbd 15780 f1omvdco3 16474 isdrngd 17421 unicld 19547 2ndcdisj2 19958 logrec 23151 cdj3lem3 27357 stoweidlem14 31796 bnj563 33800 bnj1033 34025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 |
Copyright terms: Public domain | W3C validator |