MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3an9b Unicode version

Theorem syl3an9b 1297
Description: Nested syllogism inference conjoining 3 dissimilar antecedents. (Contributed by NM, 1-May-1995.)
Hypotheses
Ref Expression
syl3an9b.1
syl3an9b.2
syl3an9b.3
Assertion
Ref Expression
syl3an9b

Proof of Theorem syl3an9b
StepHypRef Expression
1 syl3an9b.1 . . . 4
2 syl3an9b.2 . . . 4
31, 2sylan9bb 699 . . 3
4 syl3an9b.3 . . 3
53, 4sylan9bb 699 . 2
653impa 1191 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  /\w3a 973
This theorem is referenced by:  eloprabg  6390  dihjatcclem4  37148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
  Copyright terms: Public domain W3C validator