![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > syl3anl1 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
syl3anl1.1 | |
syl3anl1.2 |
Ref | Expression |
---|---|
syl3anl1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anl1.1 | . . 3 | |
2 | 1 | 3anim1i 1182 | . 2 |
3 | syl3anl1.2 | . 2 | |
4 | 2, 3 | sylan 471 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 |
This theorem is referenced by: suprzcl 10967 latjcom 15689 latmcom 15705 ring1zr 17923 lgsdinn0 23615 crngohomfo 30403 dalem53 35449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 |
Copyright terms: Public domain | W3C validator |