MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3anl1 Unicode version

Theorem syl3anl1 1276
Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
syl3anl1.1
syl3anl1.2
Assertion
Ref Expression
syl3anl1

Proof of Theorem syl3anl1
StepHypRef Expression
1 syl3anl1.1 . . 3
213anim1i 1182 . 2
3 syl3anl1.2 . 2
42, 3sylan 471 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  /\w3a 973
This theorem is referenced by:  suprzcl  10967  latjcom  15689  latmcom  15705  ring1zr  17923  lgsdinn0  23615  crngohomfo  30403  dalem53  35449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
  Copyright terms: Public domain W3C validator