MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3anl2 Unicode version

Theorem syl3anl2 1277
Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
syl3anl2.1
syl3anl2.2
Assertion
Ref Expression
syl3anl2

Proof of Theorem syl3anl2
StepHypRef Expression
1 syl3anl2.1 . . 3
2 syl3anl2.2 . . . 4
32ex 434 . . 3
41, 3syl3an2 1262 . 2
54imp 429 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369  /\w3a 973
This theorem is referenced by:  syl3anr2  1281  chfacfscmulcl  19358  chfacfscmulgsum  19361  chfacfpmmulcl  19362  chfacfpmmulgsum  19365  cpmadumatpolylem1  19382  cpmadumatpolylem2  19383  cpmadumatpoly  19384  chcoeffeqlem  19386  2atlt  35163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975
  Copyright terms: Public domain W3C validator