![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > syl3anl2 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
syl3anl2.1 | |
syl3anl2.2 |
Ref | Expression |
---|---|
syl3anl2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anl2.1 | . . 3 | |
2 | syl3anl2.2 | . . . 4 | |
3 | 2 | ex 434 | . . 3 |
4 | 1, 3 | syl3an2 1262 | . 2 |
5 | 4 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 |
This theorem is referenced by: syl3anr2 1281 chfacfscmulcl 19358 chfacfscmulgsum 19361 chfacfpmmulcl 19362 chfacfpmmulgsum 19365 cpmadumatpolylem1 19382 cpmadumatpolylem2 19383 cpmadumatpoly 19384 chcoeffeqlem 19386 2atlt 35163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 |
Copyright terms: Public domain | W3C validator |