MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl5d Unicode version

Theorem syl5d 67
Description: A nested syllogism deduction. (Contributed by NM, 14-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.)
Hypotheses
Ref Expression
syl5d.1
syl5d.2
Assertion
Ref Expression
syl5d

Proof of Theorem syl5d
StepHypRef Expression
1 syl5d.1 . . 3
21a1d 25 . 2
3 syl5d.2 . 2
42, 3syldd 66 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4
This theorem is referenced by:  syl7  68  syl9  71  imim12d  74  sbi1  2133  mopick  2356  isofrlem  6236  kmlem9  8559  squeeze0  10473  fgss2  20375  ordcmp  29912  linepsubN  35476  pmapsub  35492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
  Copyright terms: Public domain W3C validator