![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > syl6an | Unicode version |
Description: A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
Ref | Expression |
---|---|
syl6an.1 | |
syl6an.2 | |
syl6an.3 |
Ref | Expression |
---|---|
syl6an |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6an.2 | . . 3 | |
2 | syl6an.1 | . . 3 | |
3 | 1, 2 | jctild 543 | . 2 |
4 | syl6an.3 | . 2 | |
5 | 3, 4 | syl6 33 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: dfsb2 2114 xpcan 5448 xpcan2 5449 mapxpen 7703 sucdom2 7734 f1finf1o 7766 unfi 7807 inf3lem3 8068 dfac12r 8547 cfsuc 8658 fin23lem26 8726 iundom2g 8936 inar1 9174 rankcf 9176 ltsrpr 9475 supsrlem 9509 axpre-sup 9567 infmrcl 10547 nominpos 10800 ublbneg 11195 qbtwnre 11427 fsequb 12085 brfi1uzind 12532 rexanre 13179 rexuzre 13185 rexico 13186 caubnd 13191 rlim2lt 13320 rlim3 13321 lo1bddrp 13348 o1lo1 13360 climshftlem 13397 rlimcn2 13413 rlimo1 13439 lo1add 13449 lo1mul 13450 lo1le 13474 isercoll 13490 serf0 13503 cvgcmp 13630 dvds1lem 13995 dvds2lem 13996 isprm5 14253 vdwlem2 14500 vdwlem10 14508 vdwlem11 14509 lsmcv 17787 lmconst 19762 ptcnplem 20122 fclscmp 20531 tsmsresOLD 20645 tsmsres 20646 addcnlem 21368 lebnumlem3 21463 xlebnum 21465 lebnumii 21466 iscmet3lem2 21731 bcthlem4 21766 cniccbdd 21873 ovoliunlem2 21914 mbfi1flimlem 22129 ply1divex 22537 aalioulem3 22730 aalioulem5 22732 aalioulem6 22733 aaliou 22734 ulmshftlem 22784 ulmbdd 22793 tanarg 23004 cxploglim 23307 ftalem2 23347 ftalem7 23352 dchrisumlem3 23676 nvnencycllem 24643 frgraogt3nreg 25120 ubthlem3 25788 spansncol 26486 riesz1 26984 erdsze2lem2 28648 dfrdg4 29600 onsuct0 29906 neibastop2 30179 incsequz 30241 caushft 30254 equivbnd 30286 cntotbnd 30292 expgrowth 31240 vk15.4j 33298 sstrALT2 33635 bj-bary1 34681 4atexlemex4 35797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |