![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > syl6c | Unicode version |
Description: Inference combining syl6 33 with contraction. (Contributed by Alan Sare, 2-May-2011.) |
Ref | Expression |
---|---|
syl6c.1 | |
syl6c.2 | |
syl6c.3 |
Ref | Expression |
---|---|
syl6c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6c.2 | . 2 | |
2 | syl6c.1 | . . 3 | |
3 | syl6c.3 | . . 3 | |
4 | 2, 3 | syl6 33 | . 2 |
5 | 1, 4 | mpdd 40 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 |
This theorem is referenced by: syl6ci 65 syldd 66 impbidd 189 pm5.21ndd 354 jcad 533 zorn2lem6 8902 sqreulem 13192 ontopbas 29893 ontgval 29896 ordtoplem 29900 ordcmp 29912 ee33 33291 sb5ALT 33295 tratrb 33307 onfrALTlem2 33318 onfrALT 33321 ax6e2ndeq 33332 ee22an 33459 sspwtrALT 33620 sspwtrALT2 33623 trintALT 33681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
Copyright terms: Public domain | W3C validator |