![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > syl6ci | Unicode version |
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.) |
Ref | Expression |
---|---|
syl6ci.1 | |
syl6ci.2 | |
syl6ci.3 |
Ref | Expression |
---|---|
syl6ci |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ci.1 | . 2 | |
2 | syl6ci.2 | . . 3 | |
3 | 2 | a1d 25 | . 2 |
4 | syl6ci.3 | . 2 | |
5 | 1, 3, 4 | syl6c 64 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 |
This theorem is referenced by: ordelord 4905 f1dmex 6770 omeulem2 7251 2pwuninel 7692 isumrpcl 13655 kqfvima 20231 caubl 21746 frgrawopreglem2 25045 soseq 29334 btwnconn1lem12 29748 sbcim2g 33309 ee21an 33529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
Copyright terms: Public domain | W3C validator |