![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > syl6com | Unicode version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
Ref | Expression |
---|---|
syl6com.1 | |
syl6com.2 |
Ref | Expression |
---|---|
syl6com |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6com.1 | . . 3 | |
2 | syl6com.2 | . . 3 | |
3 | 1, 2 | syl6 33 | . 2 |
4 | 3 | com12 31 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 |
This theorem is referenced by: 19.33b 1696 ax6e 2002 axc16i 2064 rgen2a 2884 wefrc 4878 elres 5314 sorpssuni 6589 sorpssint 6590 ordzsl 6680 limuni3 6687 funcnvuni 6753 funrnex 6767 soxp 6913 oaabs 7312 eceqoveq 7435 php3 7723 pssinf 7750 unbnn2 7797 inf0 8059 inf3lem5 8070 tcel 8197 rankxpsuc 8321 carduni 8383 prdom2 8405 dfac5 8530 cflm 8651 indpi 9306 prlem934 9432 xrub 11532 injresinjlem 11925 hashgt12el 12481 hashgt12el2 12482 brfi1uzind 12532 cshwcsh2id 12796 cshwshash 14589 symgextf1 16446 gsummoncoe1 18346 basis2 19452 bwthOLD 19911 fbdmn0 20335 usgranloopv 24378 nbgranself2 24436 usgrnloop 24565 wlkdvspthlem 24609 4cyclusnfrgra 25019 frgrancvvdeqlem7 25036 rngoueqz 25432 atcv0eq 27298 dfon2lem9 29223 trpredrec 29321 frmin 29322 wfrlem4 29346 wfrlem12 29354 frrlem4 29390 frrlem11 29399 altopthsn 29611 rankeq1o 29828 wl-equsb4 30005 hbtlem5 31077 funressnfv 32213 afvco2 32261 ndmaovcl 32288 rngdir 32688 zlmodzxznm 33098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
Copyright terms: Public domain | W3C validator |