MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl6d Unicode version

Theorem syl6d 69
Description: A nested syllogism deduction. (Contributed by NM, 11-May-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.)
Hypotheses
Ref Expression
syl6d.1
syl6d.2
Assertion
Ref Expression
syl6d

Proof of Theorem syl6d
StepHypRef Expression
1 syl6d.1 . 2
2 syl6d.2 . . 3
32a1d 25 . 2
41, 3syldd 66 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4
This theorem is referenced by:  syl8  70  sbi1  2133  omlimcl  7246  ltexprlem7  9441  axpre-sup  9567  caubnd  13191  ubthlem1  25786  ee13  33273  ssralv2  33301  rspsbc2  33305  truniALT  33312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
  Copyright terms: Public domain W3C validator