MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl6eqbrr Unicode version

Theorem syl6eqbrr 4490
Description: A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl6eqbrr.1
syl6eqbrr.2
Assertion
Ref Expression
syl6eqbrr

Proof of Theorem syl6eqbrr
StepHypRef Expression
1 syl6eqbrr.1 . . 3
21eqcomd 2465 . 2
3 syl6eqbrr.2 . 2
42, 3syl6eqbr 4489 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395   class class class wbr 4452
This theorem is referenced by:  grur1  9219  t1conperf  19937  basellem9  23362  sqff1o  23456  ballotlemic  28445  ballotlem1c  28446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453
  Copyright terms: Public domain W3C validator