![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > syl7 | Unicode version |
Description: A syllogism rule of inference. The first premise is used to replace the third antecedent of the second premise. (Contributed by NM, 12-Jan-1993.) (Proof shortened by Wolf Lammen, 3-Aug-2012.) |
Ref | Expression |
---|---|
syl7.1 | |
syl7.2 |
Ref | Expression |
---|---|
syl7 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl7.1 | . . 3 | |
2 | 1 | a1i 11 | . 2 |
3 | syl7.2 | . 2 | |
4 | 2, 3 | syl5d 67 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 |
This theorem is referenced by: syl7bi 230 syl3an3 1263 hbae 2055 equveliOLD 2089 hbae-o 2232 ax12 2234 tz7.7 4909 fvmptt 5971 f1oweALT 6784 nneneq 7720 pr2nelem 8403 cfcoflem 8673 nnunb 10816 ndvdssub 14065 lsmcv 17787 gsummoncoe1 18346 uvcendim 18882 2ndcsep 19960 atcvat4i 27316 mdsymlem5 27326 sumdmdii 27334 dfon2lem6 29220 wfrlem12 29354 frrlem11 29399 colineardim1 29711 eel2122old 33513 bj-hbaeb2 34391 cvrat4 35167 llncvrlpln2 35281 lplncvrlvol2 35339 dihmeetlem3N 37032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
Copyright terms: Public domain | W3C validator |