MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl7bi Unicode version

Theorem syl7bi 230
Description: A mixed syllogism inference from a doubly nested implication and a biconditional. (Contributed by NM, 14-May-1993.)
Hypotheses
Ref Expression
syl7bi.1
syl7bi.2
Assertion
Ref Expression
syl7bi

Proof of Theorem syl7bi
StepHypRef Expression
1 syl7bi.1 . . 3
21biimpi 194 . 2
3 syl7bi.2 . 2
42, 3syl7 68 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184
This theorem is referenced by:  rspct  3203  zfpair  4689  gruen  9211  axpre-sup  9567  nn0lt2  10952  fzofzim  11869  ndvdssub  14065  alexsubALT  20551  clwlkisclwwlklem2a  24785  erclwwlktr  24815  erclwwlkntr  24827  dfon2lem8  29222  prtlem15  30616  prtlem18  30618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator