MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl8ib Unicode version

Theorem syl8ib 231
Description: A syllogism rule of inference. The second premise is used to replace the consequent of the first premise. (Contributed by NM, 1-Aug-1994.)
Hypotheses
Ref Expression
syl8ib.1
syl8ib.2
Assertion
Ref Expression
syl8ib

Proof of Theorem syl8ib
StepHypRef Expression
1 syl8ib.1 . 2
2 syl8ib.2 . . 3
32biimpi 194 . 2
41, 3syl8 70 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184
This theorem is referenced by:  pm3.2an3  1167  en3lplem2  7958  axdc4lem  8761  bj-nexdh  33001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator