![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > syl9r | Unicode version |
Description: A nested syllogism inference with different antecedents. (Contributed by NM, 14-May-1993.) |
Ref | Expression |
---|---|
syl9r.1 | |
syl9r.2 |
Ref | Expression |
---|---|
syl9r |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl9r.1 | . . 3 | |
2 | syl9r.2 | . . 3 | |
3 | 1, 2 | syl9 71 | . 2 |
4 | 3 | com12 31 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 |
This theorem is referenced by: sylan9r 658 ax12v 1855 19.23t 1909 nfimd 1917 fununi 5659 dfimafn 5922 funimass3 6003 isomin 6233 oneqmin 6640 tz7.48lem 7125 fisupg 7788 trcl 8180 coflim 8662 coftr 8674 axdc3lem2 8852 konigthlem 8964 indpi 9306 nnsub 10599 2ndc1stc 19952 kgencn2 20058 tx1stc 20151 filuni 20386 fclscf 20526 alexsubALTlem2 20548 alexsubALTlem3 20549 alexsubALT 20551 lpni 25181 dfimafnf 27473 dfon2lem6 29220 nodenselem8 29448 finixpnum 30038 heiborlem4 30310 dfaimafn 32250 imbi13 33290 lncvrelatN 35505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
Copyright terms: Public domain | W3C validator |