![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sylan9ss | Unicode version |
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
sylan9ss.1 | |
sylan9ss.2 |
Ref | Expression |
---|---|
sylan9ss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9ss.1 | . 2 | |
2 | sylan9ss.2 | . 2 | |
3 | sstr 3511 | . 2 | |
4 | 1, 2, 3 | syl2an 477 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
C_ wss 3475 |
This theorem is referenced by: sylan9ssr 3517 psstr 3607 unss12 3675 ss2in 3724 relrelss 5536 funssxp 5749 axdc3lem 8851 tskuni 9182 tsmsxp 20657 shslubi 26303 chlej12i 26393 insiga 28137 rtrclreclem.min 29070 fnetr 30169 pcl0bN 35647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-in 3482 df-ss 3489 |
Copyright terms: Public domain | W3C validator |