![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sylanr2 | Unicode version |
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.) |
Ref | Expression |
---|---|
sylanr2.1 | |
sylanr2.2 |
Ref | Expression |
---|---|
sylanr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanr2.1 | . . 3 | |
2 | 1 | anim2i 569 | . 2 |
3 | sylanr2.2 | . 2 | |
4 | 2, 3 | sylan2 474 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369 |
This theorem is referenced by: adantrrl 723 adantrrr 724 1stconst 6888 2ndconst 6889 isfin7-2 8797 mulsub 10024 fzsubel 11748 expsub 12213 ramlb 14537 0ram 14538 ressmplvsca 18121 tgcl 19471 fgss2 20375 nmoid 21249 chirredlem4 27312 pridlc3 30470 stoweidlem34 31816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |