MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylanr2 Unicode version

Theorem sylanr2 653
Description: A syllogism inference. (Contributed by NM, 9-Apr-2005.)
Hypotheses
Ref Expression
sylanr2.1
sylanr2.2
Assertion
Ref Expression
sylanr2

Proof of Theorem sylanr2
StepHypRef Expression
1 sylanr2.1 . . 3
21anim2i 569 . 2
3 sylanr2.2 . 2
42, 3sylan2 474 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  /\wa 369
This theorem is referenced by:  adantrrl  723  adantrrr  724  1stconst  6888  2ndconst  6889  isfin7-2  8797  mulsub  10024  fzsubel  11748  expsub  12213  ramlb  14537  0ram  14538  ressmplvsca  18121  tgcl  19471  fgss2  20375  nmoid  21249  chirredlem4  27312  pridlc3  30470  stoweidlem34  31816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator