![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sylnbi | Unicode version |
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnbi.1 | |
sylnbi.2 |
Ref | Expression |
---|---|
sylnbi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnbi.1 | . . 3 | |
2 | 1 | notbii 296 | . 2 |
3 | sylnbi.2 | . 2 | |
4 | 2, 3 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 |
This theorem is referenced by: sylnbir 307 reuun2 3780 opswap 5500 iotanul 5571 riotaund 6293 ndmovcom 6462 suppssov1 6951 suppssfv 6955 brtpos 6983 snnen2o 7726 ranklim 8283 rankuni 8302 cdacomen 8582 ituniiun 8823 hashprb 12462 1mavmul 19050 frgrancvvdeqlem2 25031 frgrawopreglem3 25046 nonbooli 26569 disjunsn 27453 ndmaovcl 32288 ndmaovcom 32290 lindslinindsimp1 33058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |