![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sylnib | Unicode version |
Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
Ref | Expression |
---|---|
sylnib.1 | |
sylnib.2 |
Ref | Expression |
---|---|
sylnib |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylnib.1 | . 2 | |
2 | sylnib.2 | . . 3 | |
3 | 2 | a1i 11 | . 2 |
4 | 1, 3 | mtbid 300 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 |
This theorem is referenced by: sylnibr 305 ssnelpss 3890 fr3nr 6615 omopthi 7325 inf3lem6 8071 rankxpsuc 8321 cflim2 8664 ssfin4 8711 fin23lem30 8743 isf32lem5 8758 gchhar 9078 qextlt 11431 qextle 11432 fzneuz 11788 vdwnn 14516 psgnunilem3 16521 efgredlemb 16764 gsumzsplit 16944 gsumzsplitOLD 16945 lspexchn2 17777 lspindp2l 17780 lspindp2 17781 psrlidm 18056 psrlidmOLD 18057 mplcoe1 18127 mplcoe5 18131 mplcoe2OLD 18133 evlslem1 18184 ptopn2 20085 regr1lem2 20241 rnelfmlem 20453 hauspwpwf1 20488 tsmssplit 20654 reconn 21333 itg2splitlem 22155 itg2split 22156 itg2cn 22170 wilthlem2 23343 bposlem9 23567 frgra2v 24999 hatomistici 27281 nn0min 27611 2sqcoprm 27635 qqhf 27967 hasheuni 28091 oddpwdc 28293 ballotlemimin 28444 ballotlemfrcn0 28468 efrunt 29085 dfon2lem4 29218 dfon2lem7 29221 nofulllem5 29466 nandsym1 29887 rmspecnonsq 30843 setindtr 30966 flcidc 31123 fmul01lt1lem2 31579 icccncfext 31690 stoweidlem14 31796 stoweidlem26 31808 stirlinglem5 31860 fourierdlem42 31931 fourierdlem62 31951 fourierdlem66 31955 bnj1388 34089 atbase 35014 llnbase 35233 lplnbase 35258 lvolbase 35302 dalem48 35444 lhpbase 35722 cdlemg17pq 36398 cdlemg19 36410 cdlemg21 36412 dvh3dim3N 37176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 |
Copyright terms: Public domain | W3C validator |