![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > sylsyld | Unicode version |
Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
sylsyld.1 | |
sylsyld.2 | |
sylsyld.3 |
Ref | Expression |
---|---|
sylsyld |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylsyld.2 | . 2 | |
2 | sylsyld.1 | . . 3 | |
3 | sylsyld.3 | . . 3 | |
4 | 2, 3 | syl 16 | . 2 |
5 | 1, 4 | syld 44 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 |
This theorem is referenced by: axc16gALT 2106 ax16g-o 2264 axc11-o 2281 trint0 4562 onfununi 7031 smoiun 7051 findcard2 7780 findcard3 7783 inficl 7905 en3lplem2 8053 r1sdom 8213 infxpenlem 8412 alephordi 8476 cardaleph 8491 pwsdompw 8605 cfslb2n 8669 isf32lem10 8763 axdc4lem 8856 zorn2lem2 8898 alephreg 8978 inar1 9174 tskuni 9182 grudomon 9216 nqereu 9328 ltleletr 9698 elfz0ubfz0 11807 ssnn0fi 12094 caubnd 13191 sqreulem 13192 bezoutlem1 14176 pcprendvds 14364 prmreclem3 14436 ptcmpfi 20314 ufilen 20431 fcfnei 20536 bcthlem5 21767 aaliou 22734 cusgrarn 24459 3cyclfrgrarn1 25012 n4cyclfrgra 25018 occon2 26206 occon3 26215 atexch 27300 sigaclci 28132 frmin 29322 idinside 29734 heibor1lem 30305 aomclem2 31001 leltletr 32318 ee02 33223 tratrb 33307 trsspwALT2 33617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
Copyright terms: Public domain | W3C validator |