MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tbt Unicode version

Theorem tbt 344
Description: A wff is equivalent to its equivalence with a truth. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Hypothesis
Ref Expression
tbt.1
Assertion
Ref Expression
tbt

Proof of Theorem tbt
StepHypRef Expression
1 tbt.1 . 2
2 ibibr 343 . . 3
32pm5.74ri 246 . 2
41, 3ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184
This theorem is referenced by:  tbtru  1405  exists1  2388  reu6  3288  eqv  3801  vprc  4590  elnev  31345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185
  Copyright terms: Public domain W3C validator