MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tbwlem5 Unicode version

Theorem tbwlem5 1542
Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tbwlem5

Proof of Theorem tbwlem5
StepHypRef Expression
1 tbw-ax2 1534 . . . 4
2 tbw-ax1 1533 . . . 4
31, 2tbwsyl 1537 . . 3
4 tbwlem1 1538 . . 3
53, 4ax-mp 5 . 2
6 tbwlem4 1541 . 2
75, 6ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4   wfal 1400
This theorem is referenced by:  re1luk3  1545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-tru 1398  df-fal 1401
  Copyright terms: Public domain W3C validator