![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tc2 | Unicode version |
Description: A variant of the definition of the transitive closure function, using instead the smallest transitive set containing as a member, gives almost the same set, except that itself must be added because it is not usually a member of (and it is never a member if is well-founded). (Contributed by Mario Carneiro, 23-Jun-2013.) |
Ref | Expression |
---|---|
tc2.1 |
Ref | Expression |
---|---|
tc2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tc2.1 | . . . . 5 | |
2 | tcvalg 8190 | . . . . 5 | |
3 | 1, 2 | ax-mp 5 | . . . 4 |
4 | trss 4554 | . . . . . . 7 | |
5 | 4 | imdistanri 691 | . . . . . 6 |
6 | 5 | ss2abi 3571 | . . . . 5 |
7 | intss 4307 | . . . . 5 | |
8 | 6, 7 | ax-mp 5 | . . . 4 |
9 | 3, 8 | eqsstri 3533 | . . 3 |
10 | 1 | elintab 4297 | . . . . 5 |
11 | simpl 457 | . . . . 5 | |
12 | 10, 11 | mpgbir 1622 | . . . 4 |
13 | 1 | snss 4154 | . . . 4 |
14 | 12, 13 | mpbi 208 | . . 3 |
15 | 9, 14 | unssi 3678 | . 2 |
16 | 1 | snid 4057 | . . . . 5 |
17 | elun2 3671 | . . . . 5 | |
18 | 16, 17 | ax-mp 5 | . . . 4 |
19 | uniun 4268 | . . . . . . 7 | |
20 | tctr 8192 | . . . . . . . . 9 | |
21 | df-tr 4546 | . . . . . . . . 9 | |
22 | 20, 21 | mpbi 208 | . . . . . . . 8 |
23 | 1 | unisn 4264 | . . . . . . . . 9 |
24 | tcid 8191 | . . . . . . . . . 10 | |
25 | 1, 24 | ax-mp 5 | . . . . . . . . 9 |
26 | 23, 25 | eqsstri 3533 | . . . . . . . 8 |
27 | 22, 26 | unssi 3678 | . . . . . . 7 |
28 | 19, 27 | eqsstri 3533 | . . . . . 6 |
29 | ssun1 3666 | . . . . . 6 | |
30 | 28, 29 | sstri 3512 | . . . . 5 |
31 | df-tr 4546 | . . . . 5 | |
32 | 30, 31 | mpbir 209 | . . . 4 |
33 | fvex 5881 | . . . . . 6 | |
34 | snex 4693 | . . . . . 6 | |
35 | 33, 34 | unex 6598 | . . . . 5 |
36 | eleq2 2530 | . . . . . 6 | |
37 | treq 4551 | . . . . . 6 | |
38 | 36, 37 | anbi12d 710 | . . . . 5 |
39 | 35, 38 | elab 3246 | . . . 4 |
40 | 18, 32, 39 | mpbir2an 920 | . . 3 |
41 | intss1 4301 | . . 3 | |
42 | 40, 41 | ax-mp 5 | . 2 |
43 | 15, 42 | eqssi 3519 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 { cab 2442
cvv 3109
u. cun 3473 C_ wss 3475 { csn 4029
U. cuni 4249 |^| cint 4286 Tr wtr 4545
` cfv 5593 ctc 8188 |
This theorem is referenced by: tcsni 8195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-om 6701 df-recs 7061 df-rdg 7095 df-tc 8189 |
Copyright terms: Public domain | W3C validator |