![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tfinds3 | Unicode version |
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. (Contributed by NM, 6-Jan-2005.) (Revised by David Abernethy, 21-Jun-2011.) |
Ref | Expression |
---|---|
tfinds3.1 | |
tfinds3.2 | |
tfinds3.3 | |
tfinds3.4 | |
tfinds3.5 | |
tfinds3.6 | |
tfinds3.7 |
Ref | Expression |
---|---|
tfinds3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfinds3.1 | . . 3 | |
2 | 1 | imbi2d 316 | . 2 |
3 | tfinds3.2 | . . 3 | |
4 | 3 | imbi2d 316 | . 2 |
5 | tfinds3.3 | . . 3 | |
6 | 5 | imbi2d 316 | . 2 |
7 | tfinds3.4 | . . 3 | |
8 | 7 | imbi2d 316 | . 2 |
9 | tfinds3.5 | . 2 | |
10 | tfinds3.6 | . . 3 | |
11 | 10 | a2d 26 | . 2 |
12 | r19.21v 2862 | . . 3 | |
13 | tfinds3.7 | . . . 4 | |
14 | 13 | a2d 26 | . . 3 |
15 | 12, 14 | syl5bi 217 | . 2 |
16 | 2, 4, 6, 8, 9, 11, 15 | tfinds 6694 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e. wcel 1818 A. wral 2807
c0 3784 con0 4883 Lim wlim 4884 suc csuc 4885 |
This theorem is referenced by: oacl 7204 omcl 7205 oecl 7206 oawordri 7218 oaass 7229 oarec 7230 omordi 7234 omwordri 7240 odi 7247 omass 7248 oen0 7254 oewordri 7260 oeworde 7261 oeoelem 7266 omabs 7315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 |
Copyright terms: Public domain | W3C validator |