![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tfindsg | Unicode version |
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal instead of zero. Remark in [TakeutiZaring] p. 57. (Contributed by NM, 5-Mar-2004.) |
Ref | Expression |
---|---|
tfindsg.1 | |
tfindsg.2 | |
tfindsg.3 | |
tfindsg.4 | |
tfindsg.5 | |
tfindsg.6 | |
tfindsg.7 |
Ref | Expression |
---|---|
tfindsg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3525 | . . . . . . 7 | |
2 | 1 | adantl 466 | . . . . . 6 |
3 | eqeq2 2472 | . . . . . . . 8 | |
4 | tfindsg.1 | . . . . . . . 8 | |
5 | 3, 4 | syl6bir 229 | . . . . . . 7 |
6 | 5 | imp 429 | . . . . . 6 |
7 | 2, 6 | imbi12d 320 | . . . . 5 |
8 | 1 | imbi1d 317 | . . . . . 6 |
9 | ss0 3816 | . . . . . . . . 9 | |
10 | 9 | con3i 135 | . . . . . . . 8 |
11 | 10 | pm2.21d 106 | . . . . . . 7 |
12 | 11 | pm5.74d 247 | . . . . . 6 |
13 | 8, 12 | sylan9bbr 700 | . . . . 5 |
14 | 7, 13 | pm2.61ian 790 | . . . 4 |
15 | 14 | imbi2d 316 | . . 3 |
16 | sseq2 3525 | . . . . 5 | |
17 | tfindsg.2 | . . . . 5 | |
18 | 16, 17 | imbi12d 320 | . . . 4 |
19 | 18 | imbi2d 316 | . . 3 |
20 | sseq2 3525 | . . . . 5 | |
21 | tfindsg.3 | . . . . 5 | |
22 | 20, 21 | imbi12d 320 | . . . 4 |
23 | 22 | imbi2d 316 | . . 3 |
24 | sseq2 3525 | . . . . 5 | |
25 | tfindsg.4 | . . . . 5 | |
26 | 24, 25 | imbi12d 320 | . . . 4 |
27 | 26 | imbi2d 316 | . . 3 |
28 | tfindsg.5 | . . . 4 | |
29 | 28 | a1d 25 | . . 3 |
30 | vex 3112 | . . . . . . . . . . . . . 14 | |
31 | 30 | sucex 6646 | . . . . . . . . . . . . 13 |
32 | 31 | eqvinc 3226 | . . . . . . . . . . . 12 |
33 | 28, 4 | syl5ibr 221 | . . . . . . . . . . . . . 14 |
34 | 21 | biimpd 207 | . . . . . . . . . . . . . 14 |
35 | 33, 34 | sylan9r 658 | . . . . . . . . . . . . 13 |
36 | 35 | exlimiv 1722 | . . . . . . . . . . . 12 |
37 | 32, 36 | sylbi 195 | . . . . . . . . . . 11 |
38 | 37 | eqcoms 2469 | . . . . . . . . . 10 |
39 | 38 | imim2i 14 | . . . . . . . . 9 |
40 | 39 | a1d 25 | . . . . . . . 8 |
41 | 40 | com4r 86 | . . . . . . 7 |
42 | 41 | adantl 466 | . . . . . 6 |
43 | df-ne 2654 | . . . . . . . . 9 | |
44 | 43 | anbi2i 694 | . . . . . . . 8 |
45 | annim 425 | . . . . . . . 8 | |
46 | 44, 45 | bitri 249 | . . . . . . 7 |
47 | onsssuc 4970 | . . . . . . . . . 10 | |
48 | suceloni 6648 | . . . . . . . . . . 11 | |
49 | onelpss 4923 | . . . . . . . . . . 11 | |
50 | 48, 49 | sylan2 474 | . . . . . . . . . 10 |
51 | 47, 50 | bitrd 253 | . . . . . . . . 9 |
52 | 51 | ancoms 453 | . . . . . . . 8 |
53 | tfindsg.6 | . . . . . . . . . . . 12 | |
54 | 53 | ex 434 | . . . . . . . . . . 11 |
55 | ax-1 6 | . . . . . . . . . . 11 | |
56 | 54, 55 | syl8 70 | . . . . . . . . . 10 |
57 | 56 | a2d 26 | . . . . . . . . 9 |
58 | 57 | com23 78 | . . . . . . . 8 |
59 | 52, 58 | sylbird 235 | . . . . . . 7 |
60 | 46, 59 | syl5bir 218 | . . . . . 6 |
61 | 42, 60 | pm2.61d 158 | . . . . 5 |
62 | 61 | ex 434 | . . . 4 |
63 | 62 | a2d 26 | . . 3 |
64 | pm2.27 39 | . . . . . . . . 9 | |
65 | 64 | ralimdv 2867 | . . . . . . . 8 |
66 | 65 | ad2antlr 726 | . . . . . . 7 |
67 | tfindsg.7 | . . . . . . 7 | |
68 | 66, 67 | syld 44 | . . . . . 6 |
69 | 68 | exp31 604 | . . . . 5 |
70 | 69 | com3l 81 | . . . 4 |
71 | 70 | com4t 85 | . . 3 |
72 | 15, 19, 23, 27, 29, 63, 71 | tfinds 6694 | . 2 |
73 | 72 | imp31 432 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
E. wex 1612 e. wcel 1818 =/= wne 2652
A. wral 2807 C_ wss 3475 c0 3784 con0 4883 Lim wlim 4884 suc csuc 4885 |
This theorem is referenced by: tfindsg2 6696 oaordi 7214 infensuc 7715 r1ordg 8217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 |
Copyright terms: Public domain | W3C validator |