![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tfr2b | Unicode version |
Description: Without assuming ax-rep 4563, we can show that all proper initial subsets
of recs are sets, while nothing larger
is a set. (Contributed by
Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
tfr.1 |
Ref | Expression |
---|---|
tfr2b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeleqon 6624 | . 2 | |
2 | eqid 2457 | . . . . 5 | |
3 | 2 | tfrlem15 7080 | . . . 4 |
4 | tfr.1 | . . . . . 6 | |
5 | 4 | dmeqi 5209 | . . . . 5 |
6 | 5 | eleq2i 2535 | . . . 4 |
7 | 4 | reseq1i 5274 | . . . . 5 |
8 | 7 | eleq1i 2534 | . . . 4 |
9 | 3, 6, 8 | 3bitr4g 288 | . . 3 |
10 | onprc 6620 | . . . . . 6 | |
11 | elex 3118 | . . . . . 6 | |
12 | 10, 11 | mto 176 | . . . . 5 |
13 | eleq1 2529 | . . . . 5 | |
14 | 12, 13 | mtbiri 303 | . . . 4 |
15 | 2 | tfrlem13 7078 | . . . . . 6 |
16 | 4 | eleq1i 2534 | . . . . . 6 |
17 | 15, 16 | mtbir 299 | . . . . 5 |
18 | reseq2 5273 | . . . . . . 7 | |
19 | 4 | tfr1a 7082 | . . . . . . . . . 10 |
20 | 19 | simpli 458 | . . . . . . . . 9 |
21 | funrel 5610 | . . . . . . . . 9 | |
22 | 20, 21 | ax-mp 5 | . . . . . . . 8 |
23 | 19 | simpri 462 | . . . . . . . . 9 |
24 | limord 4942 | . . . . . . . . 9 | |
25 | ordsson 6625 | . . . . . . . . 9 | |
26 | 23, 24, 25 | mp2b 10 | . . . . . . . 8 |
27 | relssres 5316 | . . . . . . . 8 | |
28 | 22, 26, 27 | mp2an 672 | . . . . . . 7 |
29 | 18, 28 | syl6eq 2514 | . . . . . 6 |
30 | 29 | eleq1d 2526 | . . . . 5 |
31 | 17, 30 | mtbiri 303 | . . . 4 |
32 | 14, 31 | 2falsed 351 | . . 3 |
33 | 9, 32 | jaoi 379 | . 2 |
34 | 1, 33 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 { cab 2442 A. wral 2807
E. wrex 2808 cvv 3109
C_ wss 3475 Ord word 4882 con0 4883 Lim wlim 4884 dom cdm 5004
|` cres 5006 Rel wrel 5009 Fun wfun 5587
Fn wfn 5588 ` cfv 5593 recs crecs 7060 |
This theorem is referenced by: ordtypelem3 7966 ordtypelem9 7972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-recs 7061 |
Copyright terms: Public domain | W3C validator |