![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tfrlem14 | Unicode version |
Description: Lemma for transfinite
recursion. Assuming ax-rep 4563,
dom recs e. <-> recs e. , so
since dom recs
is an ordinal,
it must be equal to . (Contributed by NM,
14-Aug-1994.)
(Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 |
Ref | Expression |
---|---|
tfrlem14 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . . 4 | |
2 | 1 | tfrlem13 7078 | . . 3 |
3 | 1 | tfrlem7 7071 | . . . 4 |
4 | funex 6140 | . . . 4 | |
5 | 3, 4 | mpan 670 | . . 3 |
6 | 2, 5 | mto 176 | . 2 |
7 | 1 | tfrlem8 7072 | . . 3 |
8 | ordeleqon 6624 | . . 3 | |
9 | 7, 8 | mpbi 208 | . 2 |
10 | 6, 9 | mtpor 1603 | 1 |
Colors of variables: wff setvar class |
Syntax hints: \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 { cab 2442
A. wral 2807 E. wrex 2808 cvv 3109
Ord word 4882
con0 4883 dom cdm 5004 |` cres 5006
Fun wfun 5587
Fn wfn 5588 ` cfv 5593 recs crecs 7060 |
This theorem is referenced by: tfr1 7085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-recs 7061 |
Copyright terms: Public domain | W3C validator |