![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tfrlem3 | Unicode version |
Description: Lemma for transfinite recursion. Let be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in for later use. (Contributed by NM, 9-Apr-1995.) |
Ref | Expression |
---|---|
tfrlem3.1 |
Ref | Expression |
---|---|
tfrlem3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem3.1 | . . 3 | |
2 | vex 3112 | . . 3 | |
3 | 1, 2 | tfrlem3a 7065 | . 2 |
4 | 3 | abbi2i 2590 | 1 |
Colors of variables: wff setvar class |
Syntax hints: /\ wa 369 = wceq 1395
{ cab 2442 A. wral 2807 E. wrex 2808
con0 4883 |` cres 5006 Fn wfn 5588
` cfv 5593 |
This theorem is referenced by: tfrlem4 7067 tfrlem8 7072 rdglem1 7100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-res 5016 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |