![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tfrlem4 | Unicode version |
Description: Lemma for transfinite recursion. is the class of all "acceptable" functions, and is their union. First we show that an acceptable function is in fact a function. (Contributed by NM, 9-Apr-1995.) |
Ref | Expression |
---|---|
tfrlem.1 |
Ref | Expression |
---|---|
tfrlem4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . . 4 | |
2 | 1 | tfrlem3 7066 | . . 3 |
3 | 2 | abeq2i 2584 | . 2 |
4 | fnfun 5683 | . . . 4 | |
5 | 4 | adantr 465 | . . 3 |
6 | 5 | rexlimivw 2946 | . 2 |
7 | 3, 6 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 { cab 2442
A. wral 2807 E. wrex 2808 con0 4883 |` cres 5006 Fun wfun 5587
Fn wfn 5588 ` cfv 5593 |
This theorem is referenced by: tfrlem6 7070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-res 5016 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |