![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tfrlem5 | Unicode version |
Description: Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlem.1 |
Ref | Expression |
---|---|
tfrlem5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . 3 | |
2 | vex 3112 | . . 3 | |
3 | 1, 2 | tfrlem3a 7065 | . 2 |
4 | vex 3112 | . . 3 | |
5 | 1, 4 | tfrlem3a 7065 | . 2 |
6 | reeanv 3025 | . . 3 | |
7 | simp2ll 1063 | . . . . . . . . 9 | |
8 | simp3l 1024 | . . . . . . . . 9 | |
9 | fnbr 5688 | . . . . . . . . 9 | |
10 | 7, 8, 9 | syl2anc 661 | . . . . . . . 8 |
11 | simp2rl 1065 | . . . . . . . . 9 | |
12 | simp3r 1025 | . . . . . . . . 9 | |
13 | fnbr 5688 | . . . . . . . . 9 | |
14 | 11, 12, 13 | syl2anc 661 | . . . . . . . 8 |
15 | 10, 14 | elind 3687 | . . . . . . 7 |
16 | onin 4914 | . . . . . . . . 9 | |
17 | 16 | 3ad2ant1 1017 | . . . . . . . 8 |
18 | fnfun 5683 | . . . . . . . . . 10 | |
19 | 7, 18 | syl 16 | . . . . . . . . 9 |
20 | inss1 3717 | . . . . . . . . . 10 | |
21 | fndm 5685 | . . . . . . . . . . 11 | |
22 | 7, 21 | syl 16 | . . . . . . . . . 10 |
23 | 20, 22 | syl5sseqr 3552 | . . . . . . . . 9 |
24 | 19, 23 | jca 532 | . . . . . . . 8 |
25 | fnfun 5683 | . . . . . . . . . 10 | |
26 | 11, 25 | syl 16 | . . . . . . . . 9 |
27 | inss2 3718 | . . . . . . . . . 10 | |
28 | fndm 5685 | . . . . . . . . . . 11 | |
29 | 11, 28 | syl 16 | . . . . . . . . . 10 |
30 | 27, 29 | syl5sseqr 3552 | . . . . . . . . 9 |
31 | 26, 30 | jca 532 | . . . . . . . 8 |
32 | simp2lr 1064 | . . . . . . . . 9 | |
33 | ssralv 3563 | . . . . . . . . 9 | |
34 | 20, 32, 33 | mpsyl 63 | . . . . . . . 8 |
35 | simp2rr 1066 | . . . . . . . . 9 | |
36 | ssralv 3563 | . . . . . . . . 9 | |
37 | 27, 35, 36 | mpsyl 63 | . . . . . . . 8 |
38 | 17, 24, 31, 34, 37 | tfrlem1 7064 | . . . . . . 7 |
39 | fveq2 5871 | . . . . . . . . 9 | |
40 | fveq2 5871 | . . . . . . . . 9 | |
41 | 39, 40 | eqeq12d 2479 | . . . . . . . 8 |
42 | 41 | rspcv 3206 | . . . . . . 7 |
43 | 15, 38, 42 | sylc 60 | . . . . . 6 |
44 | funbrfv 5911 | . . . . . . 7 | |
45 | 19, 8, 44 | sylc 60 | . . . . . 6 |
46 | funbrfv 5911 | . . . . . . 7 | |
47 | 26, 12, 46 | sylc 60 | . . . . . 6 |
48 | 43, 45, 47 | 3eqtr3d 2506 | . . . . 5 |
49 | 48 | 3exp 1195 | . . . 4 |
50 | 49 | rexlimivv 2954 | . . 3 |
51 | 6, 50 | sylbir 213 | . 2 |
52 | 3, 5, 51 | syl2anb 479 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
{ cab 2442 A. wral 2807 E. wrex 2808
i^i cin 3474 C_ wss 3475 class class class wbr 4452
con0 4883 dom cdm 5004 |` cres 5006
Fun wfun 5587
Fn wfn 5588 ` cfv 5593 |
This theorem is referenced by: tfrlem7 7071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 |
Copyright terms: Public domain | W3C validator |