![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > tfrlem9a | Unicode version |
Description: Lemma for transfinite
recursion. Without using ax-rep 4563, show that all
the restrictions of recs are sets.
(Contributed by Mario Carneiro,
16-Nov-2014.) |
Ref | Expression |
---|---|
tfrlem.1 |
Ref | Expression |
---|---|
tfrlem9a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . . . 5 | |
2 | 1 | tfrlem7 7071 | . . . 4 |
3 | funfvop 5999 | . . . 4 | |
4 | 2, 3 | mpan 670 | . . 3 |
5 | 1 | recsfval 7069 | . . . . 5 |
6 | 5 | eleq2i 2535 | . . . 4 |
7 | eluni 4252 | . . . 4 | |
8 | 6, 7 | bitri 249 | . . 3 |
9 | 4, 8 | sylib 196 | . 2 |
10 | simprr 757 | . . . 4 | |
11 | vex 3112 | . . . . 5 | |
12 | 1, 11 | tfrlem3a 7065 | . . . 4 |
13 | 10, 12 | sylib 196 | . . 3 |
14 | 2 | a1i 11 | . . . . . . . 8 |
15 | simplrr 762 | . . . . . . . . . 10 | |
16 | elssuni 4279 | . . . . . . . . . 10 | |
17 | 15, 16 | syl 16 | . . . . . . . . 9 |
18 | 17, 5 | syl6sseqr 3550 | . . . . . . . 8 |
19 | fndm 5685 | . . . . . . . . . . . 12 | |
20 | 19 | ad2antll 728 | . . . . . . . . . . 11 |
21 | simprl 756 | . . . . . . . . . . 11 | |
22 | 20, 21 | eqeltrd 2545 | . . . . . . . . . 10 |
23 | eloni 4893 | . . . . . . . . . 10 | |
24 | 22, 23 | syl 16 | . . . . . . . . 9 |
25 | simpll 753 | . . . . . . . . . 10 | |
26 | fvex 5881 | . . . . . . . . . . 11 | |
27 | 26 | a1i 11 | . . . . . . . . . 10 |
28 | simplrl 761 | . . . . . . . . . . 11 | |
29 | df-br 4453 | . . . . . . . . . . 11 | |
30 | 28, 29 | sylibr 212 | . . . . . . . . . 10 |
31 | breldmg 5213 | . . . . . . . . . 10 | |
32 | 25, 27, 30, 31 | syl3anc 1228 | . . . . . . . . 9 |
33 | ordelss 4899 | . . . . . . . . 9 | |
34 | 24, 32, 33 | syl2anc 661 | . . . . . . . 8 |
35 | fun2ssres 5634 | . . . . . . . 8 | |
36 | 14, 18, 34, 35 | syl3anc 1228 | . . . . . . 7 |
37 | 11 | resex 5322 | . . . . . . . 8 |
38 | 37 | a1i 11 | . . . . . . 7 |
39 | 36, 38 | eqeltrd 2545 | . . . . . 6 |
40 | 39 | expr 615 | . . . . 5 |
41 | 40 | adantrd 468 | . . . 4 |
42 | 41 | rexlimdva 2949 | . . 3 |
43 | 13, 42 | mpd 15 | . 2 |
44 | 9, 43 | exlimddv 1726 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 E. wex 1612 e. wcel 1818
{ cab 2442 A. wral 2807 E. wrex 2808
cvv 3109
C_ wss 3475 <. cop 4035 U. cuni 4249
class class class wbr 4452 Ord word 4882
con0 4883 dom cdm 5004 |` cres 5006
Fun wfun 5587
Fn wfn 5588 ` cfv 5593 recs crecs 7060 |
This theorem is referenced by: tfrlem15 7080 tfrlem16 7081 rdgseg 7107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-fv 5601 df-recs 7061 |
Copyright terms: Public domain | W3C validator |